

Эксперимент по проверке электронейтральности нейтрона с применением СЭМУРН методики

Воронин В.В., Кузнецов И.А.

Петербургский институт ядерной физики им. Б.П.Константинова НИЦ КИ

РНСИ-КС-2014

Воронин В.В., Кузнецов И.А. (ПИЯФ)

Прецизионная нейтронная ...

РНСИ-КС-2014 1 / 1

SESANS method

Neutron beam polarization P is directed perpendicularly to guiding magnetic field B. Neutron wave function can be written in form

$$\psi_{in} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} e^{-\frac{i\varphi_0}{2}} \\ e^{+\frac{i\varphi_0}{2}} \end{array} \right),$$

here φ_0 - neutron spin direction in azimuthally plane. Let's consider P parallel to X-axis ($\varphi_0 = 0$) \Rightarrow $\mathbf{P} = (1, 0, 0)$

SESANS method - II

Let's apply $V_{sr}(x)$. The phase difference between these two eigenstates will be

$$\varphi_{sr} = (V_{sr}(x_0) - V_{sr}(x_0 + \Delta x))/\hbar \cdot \tau,$$

The neutron wave function on the exit of coil K2 will be

$$\psi_{out} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-\frac{i\varphi_{sr}}{2}} \\ e^{+\frac{i\varphi_{sr}}{2}} \end{pmatrix} \Rightarrow \mathbf{P} = (\cos\varphi_{sr}, \sin\varphi_{sr}, 0)$$

Воронин В.В., Кузнецов И.А. (ПИЯФ)

Alternative SESANS layout

The value of spatial splitting

will be two times more than for the previous scheme

$$\Delta X_L = \frac{2\mu B}{E} \cdot l \cdot \tan \theta_0$$

Воронин В.В., Кузнецов И.А. (ПИЯФ)

▲ □ ► < □ ► </p>

Classical SESANS interpretation

Single coil make a spin modulation in X direction $\phi(\mathbf{x}) = 2B\gamma_n \tan(\theta_0) \frac{\mathbf{x}}{v}$ Angle of neutron spin rotation will be

$$\phi = \frac{2B\gamma_n \tan(\theta_0)}{v} \left(0 - l\alpha_0 - (L_v + l)\alpha_0 + (L_v + 2l)\alpha_0\right) \equiv 0$$

After the scattering on α angle $\phi(\alpha) = \frac{2B\gamma_n \tan(\theta_0)}{v} \cdot l\alpha$

Воронин В.В., Кузнецов И.А. (ПИЯФ)

Прецизионная нейтронная ...

Laue diffraction in perfect crystal

Symmetrical Laue diffraction. $\mathbf{j}_{(1)}$ and $\mathbf{j}_{(2)}$ are the neutron fluxes for two direction of incident beam.

Effect of diffraction enhancement

The neutron in the crystal changes the momentum direction by the angle of Ω (by several tens degrees) while the incident neutron beam deflects by the Bragg width (within a few arc seconds)

$$\Omega = \Delta \theta \cdot \frac{E}{2v_g} \Rightarrow \Delta \theta \cdot 10^5$$

The same phenomenon occurs then not direction but neutron energy is changed according to the

$$\Delta \theta = \frac{\Delta E}{2E} \tan \theta_B$$

Measurement the neutron prism refraction¹

Воронин В.В., Кузнецов И.А. (ПИЯФ)

Прецизионная нейтронная ...

РНСИ-КС-2014 7 / 1

Change neuron length wave in magnetic field²

²A.Zeilinger, C.G.Shull, Phys.Rev.B **19** (1979) 3957 Воронин В.В., Кузнецов И.А. (ПИЯФ) Прецизионная нейтронная ...

РНСИ-КС-2014 8 / 1

э

イロト イヨト イヨト イヨト

SESANS + Laue diffraction

The values of neutron splitting

Laue diffr.+SESANS Standard SESANS $\Delta X_L = \frac{2\mu B}{v_g} L \sin \theta_B \cdot \tan \theta_0 \iff \Delta X = \frac{2\mu B}{E} \cdot l \cdot \tan \theta_0$ About $K_g = \frac{E}{v_g} \Rightarrow 10^5$ times more. $\overline{\Delta X_L}$ for silicon (220) and (100) quartz planes, L = 10 cm, $\tan \theta_0 = 1$ and $\theta_B = 65^0$ can be $\sim 40\mu$ m and $\sim 120\mu$ m for the B = 1 G. BODDHMH B.B., KY3HELOB M.A. (ПИЯФ) Прецизионная нейтронная ... PHCM-KC-2014 9 / 1

Two crystal focusing³

Воронин В.В., Кузнецов И.А. (ПИЯФ)

Прецизионная нейтронная ...

РНСИ-КС-2014 10 / 1

New layout of SESANS + Laue diffraction

Advantages -

- More luminosity
- Only two coils
- More space in research area.

Disadvantage -

< 17 ▶

 Nobody saw the two crystal diffraction focusing effect in separated crystals

Воронин В.В., Кузнецов И.А. (ПИЯФ)

4 3 4 3 4

Sensitivity of SESANS + Laue

Angle of spin rotation

$$\varphi_v = \frac{dV}{dx} \Delta X_L \cdot \frac{L_v}{\hbar v_n} \simeq 5 \cdot 10^{12} \cdot \frac{dV}{dx} [eV/cm]$$

For the (100) quartz plane (d=4.255Å, $v_g = 1.8 \cdot 10^{-8} \text{eV}$), $\theta_B = 65^0$, L = 10 cm, $\tan \theta_0 = 3$, B = 100G, $L_v = 100$ cm

Statistical sensitivity

Accuracy of spin rotation measurement can be about 10^{-4} rad, so

$$\sigma\left(\frac{dV}{dx}\right) \simeq 2 \cdot 10^{-17} [eV/cm] \simeq 2 \cdot 10^{-8} m_n g$$

$$\sigma(\alpha) \simeq 10^{-12} rad$$

Воронин В.В., Кузнецов И.А. (ПИЯФ)

Прецизионная нейтронная ...

РНСИ-КС-2014 12 / 1

Possible applications

• Test of a neutron electro-neutrality $\frac{dV}{dx} = E_e q_n$.

$$\sigma(\varphi) = 10^{-4} \Longrightarrow \underline{\sigma(q_n)} \simeq 2 \cdot 10^{-22} e^{-4}$$

about one orders better present accuracy*.

- *J.Baumann, R.Gahler, J.Kalus, W.Mampe, PR D37, 3107 (1988)
- Study the neutron gravity in the Earth with the sensitivity

$$\sigma(m_n g) \sim 10^{-8} m_n g$$

- Search for the new fundamental interaction of a neutron with the matter (5-th force) at the range distance about 0.01 1 cm
- Measurement of a matter refracting index scattering with stat. accuracy

 $\underline{\sigma(a_n)} \sim (10^{-5} - 10^{-6})$ for condenced matter

 $\underline{\sigma(a_n)} \sim (10^{-3} - 10^{-4})$ for gas (There are some questions.)

Neutron refraction in quartz prism⁴

SESANS at WWR-M reactor (PNPI, Gatchina)

Value of phase shift due to refraction in prism

$$\Delta \varphi_r = \frac{V_0}{E} \frac{2\pi}{\lambda} \Delta x \tan \alpha$$

We used quartz prism $V_0\simeq 10^{-7}$ eV, $lpha=78^0$

The phase shift dependence on a value of magnetic field in main coils.

イロト イヨト イヨト イヨト

⁴Thanks to Axelrod L.A. and Zabenkin V.N.

Воронин В.В., Кузнецов И.А. (ПИЯФ)

Прецизионная нейтронная ...

РНСИ-КС-2014 14 / 1

Full scale setup construction is now under construction

- SiO_2 crystals -100 × 100 × 50mm³, (100) plane, d=4.255Å or Si crystal, (220) plane,d=3.313Å
- Accuracy of crystal rotation 0.3"
- Table glass ceramics with $\varkappa \sim 10^{-8}/K$
- Temperature stability -0.01K per day

Crystal diffraction unit of the setup

Воронин В.В., Кузнецов И.А. (ПИЯФ)

РНСИ-КС-2014 15 / 1

Magnetic field coils

Field in the coils

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Воронин В.В., Кузнецов И.А. (ПИЯФ)

- 2

Simulation of magnetic field

For 1 mm μ -metal screen

- Homogeneity of the inside field improved by 15 times
- Value of outside field decrease by 30 times
- The ratio of field integral inside and outside the coil becomes $\sim 2 \cdot 10^3$.

< 🗇 🕨

(B)

Summary

New approach for precise neutron spectrometry is proposed.

- It is based on two principle
 - spin interferometer technique SESANS
 - effects in perfect crystal Laue diffraction
- A method sensitivity can reach

$$\sigma\left(\frac{dV}{dx}\right) \simeq 10^{-17} [eV/cm] \Rightarrow \underline{\sigma\left(E_n\right)} \sim 10^{-15} eV$$

This approach can be applied for

- Test of a neutron electro-neutrality with the best accuracy
- Study the neutron gravity in the Earth with the sensitivity
- Search for the new fundamental interaction
- Precise measurement of an amplitude of neutron scattering