

- Historical review and motivation of new nEDM experiment
- Idea and test of the experimental scheme
- General scheme of the full scale experiment
- Analysis of the statistic sensitivity
- Analysis of systematic
- Conclusion and plan for the future

Neutron EDM

Sensitivity to neutron EDM

$$\sigma^{-1} \sim E\tau \sqrt{N}$$

If size of neutron R ~ 10^{-13} cm, then ration $d_n/R \sim 6.3 \cdot 10^{-13}$. Such a part from Earth radius is ~ 4 µm·

Sensitivity to neutron EDM (2)

Historical review

1966	•	Abov Yu.G., Gulko A.D., Krupchitsky, P.A. Polarized Slow Neutrons; Atomizdat; Moscow, 1966 Interference of the nuclear and spin-orbit amplitudes in a non-centrosymmetric crystal.
1967	•	Shull,C.G.; Nathans,R. Phys. Rev. Lett.1967 19 384. Bragg reflection by CdS centrosymmetrical crystal for the EDM search: d _n <7 10 ⁻²² e cm
1972	•	Golub R., Pendlebury G.M., Contemp. Phys. (1972) 13 519. The idea to use the atomic electric fields for the neutron EDM search. But how?
1983	•	Forte M. J., Phys. G (1983) 9 745. Idea to search for neutron EDM by measuring a spin rotation angle for the Bragg diffraction scheme.
1989	•	Forte M., Zeyen C.M.E. Nucl. Instr. and Meth. A (1989) A284 147. Experiment on the neutron spin-orbit rotation in the Bragg scheme of the diffraction.
1989	٠	Fedorov V.V., et al. Nucl. Instr. and Meth. A (1989) A284 181. First measurements of electric field of NCS crystal. E _g ≈2 10 ⁸ V/cm for quartz crystal.
1992	•	Fedorov V.V., Voronin V.V., Lapin E.G. J. Phys. G (1992) 18 1133. Laue diffraction scheme for the neutron EDM search. Spin dependence of pendulum phase.
1995	•	Fedorov V.V., Voronin V.V., Lapin E.G., Sumbaev O.I. Tech.Phys. Lett. (1995) 21 (11) 881; Physica B (1997) 234236 8. Depolarization in Laue diffraction scheme and sensitivity to neutron EDM search.
1997- 2005	•	Fedorov V.V. et al Series of the test experiments on observation of spin effects in neutron optics and diffraction

$$e^{i\mathbf{k}\mathbf{r}}$$

$$\mathbf{E} = \langle e^{i\mathbf{k}\mathbf{r}} | \mathbf{E}(\mathbf{r}) | e^{i\mathbf{k}\mathbf{r}} \rangle \equiv 0$$

 $\langle \psi(\mathbf{r}) | \mathbf{E}(\mathbf{r}) | \psi(\mathbf{r}) \rangle \neq 0 \quad \Longrightarrow \quad \psi(\mathbf{r}) = ???$ The case of noncentrosymmetric crystal $\text{Bloch theorem} - \psi(\mathbf{r}) \Leftrightarrow V_n(\mathbf{r})$ $\mathbf{E}(\mathbf{r}) \sim grad(V_e(\mathbf{r})) \quad \text{We should have} \quad V_e(\mathbf{r}) \Leftrightarrow V_e(\mathbf{r} + \mathbf{r}_0)$

k_o

 $k_0 + g$

 \mathbf{Z}

Bragg diffraction case

ILL Seminar 30 Jan. 2006

ILL Seminar 30 Jan. 2006

Experimental test Two crystal line (AT)

07

We can control the deviation parameter by the temperature of crystal.

Two crystal line (Angular)

0.

DEDM-V project (search for the neutron EDM by crystal diffraction method)

V.V. Fedorov, E.G. Lapin, I.A. Kusnetsov, S.Yu. Semenikhin, V.V. Voronin

PNPI, Gatchina, Russia E. Lelievre-Berna, V. Nesvizhevsky, A. Petoukhov, T. Soldner, F.Tasset

V.G. Baryshevskii

ILL, Grenoble, France

INP, Minsk, Belarus

Scheme of the experiment

3-D analysis of polarization

Magnetic field || surface of the superconductor.

ILL Seminar 30 Jan. 2006

Õ

F. Tasset, P.J. Brown, E. Lelie`vre-Berna, T. Roberts, S. Pujol, J. Allibon, E. Bourgeat-Lami, Physica B, **267-268** (1999) 69-74

Photo of quartz crystals

ILL Seminar 30 Jan. 2006

Statistical sensitivity (1)

Parameters of some NCS crystals

Crystal	Symmetry group	Hkl	d, (Å)	E _g , 10 ⁸ V/cm	τ _a , ms	E _g τ _a , (kV⋅s/cm)
α-quartz	32(D ⁶ ₃)	111	2.236	2.3	1	230
(SiO ₂)		110	2.457	2.0		200
Bi ₁₂ SiO ₂₀	123	433	1.75	4.3	4	1720
		312	2.72	2.2		880
Bi ₄ Si ₃ O ₁₂	-43m	242	2.10	4.6	2	920
		132	2.75	3.2		640
PbO	P c a 21	002	2.94	10.4	1	1040
		004	1.47	10		1000
BeO	6mm	011	2.06	5.4	7	3700
		201	1.13	6.5		4500

!!! We should looking for new NCS crystal **!!!**

Matrix of spin rotation

What we need to reach $\sigma_d < 10^{-26} e$ cm?

Summary of the systematic

Summary of the experimental scheme

- Possibility to reverse of the electric field.
- "Zero" Schwinger effect.
- Possibility to control and suppress the systematic.
- Low influence of crystal quality. (For $\omega_m \gg \Delta \theta$ the effects ~ $\Delta \theta / \omega_m$. Intensity ~ ω_m). \longrightarrow New kinds of NSC crystals
- One can increase the effect by using a series of crystals

For quartz crystal,
$$\sigma_d \sim 1.3 \cdot 10^{-26} \ e \cdot cm$$

- Full scale test at ILL (Grenoble, France) Time 2006
 - Sensitivity $\sigma_d \sim (1-2) \cdot 10^{-24} \ e \cdot cm \ per \ day$
- Full scale experiment with the quartz

 - Sensitivity $\sigma_d \sim 10^{-26} e \cdot cm$
- Experiment with another crystal
 - Time ??

• Sensitivity -
$$??\sigma_d \sim 10^{-27} e \cdot cm ??$$