

Neutron volumetric test of a high perfect crystal quality

I.A. Kuznetsov, V.V. Fedorov, E.G. Lapin, S.Yu. Semenikhin, V.V. Voronin, Yu.P. Braginetz, K.Yu. Amosov

Petersburg nuclear physics institute, Gatchina, Russia

- Crystal-diffraction nEDM project (report of Fedorov Valery)
- Crystal diffraction method to measure neutron electric charge and inertial to gravitational mass ratio (poster of Voronin Vladimir)

Require high perfect crystal with $\Delta d/d \sim 10^{-6}$ for the sizes $10 \times 10 \times 10^{-6}$ for the sizes $10 \times 10 \times 10^{-6}$ for the sizes 10×10^{-6} for the size 10×10^{-6} for 10×10^{-6} f

Standard principle

To measure the two crystals rocking curve

Problems –

- Δθ~10⁻⁶-10⁻⁷
- How to measure
 - absolute value of Δd ?
- Crystal preparation
- This is the test of surface only

Our requirements

- Low cost
- Short time
- Test whole crystal volume
- Possibility to compare d of different samples
- Possibility to check crystal without preliminary preparation (cutting off, polishing, orientation)

Bragg width for backscattering

PNPI

Crystal angular alignment

Minimal width of two crystal line

For the presented case the systematic for $\Delta d/d$ due to not exact crystals angular alignment ~ $\sigma(\Delta d/d)_{syst} \approx 2.5 \ 10^{-7}$

Example of two crystal line ("good")

Example of two crystal line ("bad")

Summary of quartz crystals

	Description	W _{∆d/d} , 10 ⁻⁵	∆ d/d, 10 -5
1	Synthetic, 140x140x35mm ³	2.0 – 2.7	-(1.3 – 1.0)
2	Synthetic, 240x160x40mm ³	6	-(0.8 – 0.7)
3	Synthetic, 270x148x40mm ³	6	-(0.9 – 0.6)
4	Synthetic, 140x140x35mm ³	2.0 – 2.6	-(1.3 – 1.0)
5	Natural, 180x130x8mm ³	2.2 – 3.0	+(0.2 - 1.2)
6	Synthetic, 110x40x14mm ³ ("bad")	8.8 – 9.5	+(1.6 – 1.8)
7	Synthetic,110x40x18mm ³ ("good")	1.9 – 2.2	-(0.9 – 0.8)
8	Natural, 108x85x143mm ³	3.5 – 8.0	+(0.0 - 3.0)
9	Natural, 180x118x8mm ³ (analyzer)	1.9 – 3.2	-0.5 - +0.5
10	Synthetic, 100x100x30mm ³	2.4 – 2.7	-(1.2 – 1.0)

Summary

- The backscattering method to test the crystal quality was developed
- Low requirement for the preliminary angular alignment (~0.5⁰) due to large Bragg width for π/2 reflex
- The crystals can be measured without preliminary preparation (cutting off, polishing and ...)
- The tested crystal thickness is limited only by the neutron absorption, so for quartz and silicon crystals we test up to 50 cm.
- The accuracy of measurements can be $\Delta d/d \sim 10^{-7}$ relatively to reference crystal